Docetaxel induced-JNK2/PHD1 signaling pathway increases degradation of HIF-1α and causes cancer cell death under hypoxia
نویسندگان
چکیده
HIF-1 (hypoxia-inducible factor-1) regulates the expression of more than 70 genes involved in angiogenesis, tumor growth, metastasis, chemoresistance, and radioresistance. Thus, there is growing interest in using HIF-1 inhibitors as anticancer drugs. Docetaxel, a Food and Drug Administration-approved anticancer drug, is reported to enhance HIF-1α degradation. Here, we investigated the molecular mechanism underlying docetaxel-induced HIF-1α degradation and cancer cell death under hypoxic conditions. Docetaxel pretreatment enhanced the polyubiquitination and proteasome-mediated degradation of HIF-1α, and increased cancer cell death under hypoxic conditions. Docetaxel also activated the prolyl hydroxylase, PHD1, in hypoxia, and pharmacological inhibition or siRNA-mediated knockdown of PHD1 prevented docetaxel-induced HIF-1α degradation and cancer cell death. Additionally, siRNA-mediated JNK2 knockdown blocked docetaxel-induced HIF-1α degradation and cancer cell death by inhibiting PHD1 activation. A luciferase reporter assay revealed that inhibition of the JNK2/PHD1 signaling pathway significantly increased the transcriptional activity of HIF-1 in docetaxel-treated cancer cells under hypoxia. Consistent with these results, docetaxel-treated JNK2-knockdown tumors grew much faster than control tumors through inhibition of docetaxel-induced PHD1 activation and degradation of HIF-1α. Our results collectively show that, under hypoxic conditions, docetaxel induces apoptotic cell death through JNK2/PHD1 signaling-mediated HIF-1α degradation.
منابع مشابه
Brusatol-Mediated Inhibition of c-Myc Increases HIF-1α Degradation and Causes Cell Death in Colorectal Cancer under Hypoxia
HIF-1 (hypoxia-inducible factor-1) regulates the expression of ~100 genes involved in angiogenesis, metastasis, tumor growth, chemoresistance and radioresistance, underscoring the growing interest in targeting HIF-1 for cancer control. In the present study, we investigated the molecular mechanisms underlying brusatol-induced HIF-1α degradation and cell death in colorectal cancer under hypoxia (...
متن کاملPropofol Reversed Hypoxia-Induced Docetaxel Resistance in Prostate Cancer Cells by Preventing Epithelial–Mesenchymal Transition by Inhibiting Hypoxia-Inducible Factor 1α
Prostate cancer is the second most frequently diagnosed cancer worldwide. Hypoxia-induced epithelial-mesenchymal transition (EMT), driven by hypoxia-inducible factor 1α (HIF-1α), is involved in cancer progression and metastasis. The present study was designed to explore the role of propofol in hypoxia-induced resistance of prostate cancer cells to docetaxel. We used the Cell Counting Kit-8 and ...
متن کاملHypoxia-inducible factor prolyl-hydroxylase-2 mediates transforming growth factor beta 1-induced epithelial-mesenchymal transition in renal tubular cells.
Transforming growth factor beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in kidney epithelial cells plays a key role in renal tubulointerstitial fibrosis in chronic kidney diseases. As hypoxia-inducible factor (HIF)-1α is found to mediate TGF-β1-induced signaling pathway, we tested the hypothesis that HIF-1α and its upstream regulator prolyl hydroxylase domain-containing prote...
متن کاملBlockade of Hypoxia: The Impact on Tumor Growth in an Experimental Tumor Model
Background: Tumor microenvironment is an active factor participating in immunoregulation, thereby preventing immunosurveillance and limiting the efficacy of anticancer therapies. Hypoxia as a major characteristic of solid tumors causes the expression of Hypoxia-Inducible Factor-1α (HIF-1α). This is a transcription factor that mediates hypoxic responses of tumor cells and involves in the express...
متن کاملفاکتور القا شونده بهوسیله هیپوکسی: نقش آن در آنژیوژنز و سرطان
Angiogenesis, as the process of new vessel formation from pre-existing vessels is dependent on a delicate equilibrium between endogenous angiogenic and antiangiogenic factors. However, under pathological conditions, this tight regulation becomes lost which can result in the formation of the different diseases such as cancer. Angiogenesis is a complex process that includes many gene products tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016